
memory_w6.md 03/03/2019

1 / 3

Memory

Purpose of this exercise is to give exposure to memory access patterns, and some practice examining
how a program uses memory.
Files

Makefile
heaploop: compile heaploop.c
matmul: compile matmul.c
traces: executes runit on compiled heaploop.c and matmul.c
clean: remove everything created by make

heaploop.c: file to trace
matmul.c: file to trace
runit: runs valgrind to trace program, pass it to refstring.py, output contents to tr-*.ref file
refstring.py: remove valgrind comments

Trace file contains memory address in hexadecimal, and character in second field to determine type of
access

I: instruction
Data

S: store
L: load
M: modify

Translate Virtual Address -> Page Table -> Physical Address
Page: 4kb. Therefore 12 bits page offset. (Convert 4000 decimal to binary)
Example

Virtual address = 7ff0008e8
Convert virtual address to binary = 0111 1111 1111 0000 0000 0000 1000 1110 1000
Remove last 12 bits from virtual address binary = 0111 1111 1111 0000 0000 0000
Convert the binary from last step to hex = 7FF000

Excercise: Write a program that will translate each memory reference into a page number assuming
pages are 4096 bytes. Output a table of each unique intruction pages with a count of the number of
accesses for each page, and a table of unique data pages with a count of the number of accesses for
each page.

Refer to code 1

Code 1
'''Translate memory reference into page number assuming pages are 4096
bytes'''

FILENAME = "tr-heaploop.ref"

def conversion(hexa):
 '''Given virtual page address convert it to physical page

 Givn a physical page address in hexadecimal, convert it to binary,
 remove number of bits from the end depending on bits needed to

memory_w6.md 03/03/2019

2 / 3

represent
 size of page, conver this value back to hexadecimal.

 Args:
 hexa: string which holds an hexadecimal number representing
physical
 page address

 Returns: virtual page address in hexadecimal
 '''
 number_of_bits = 12

 binary = bin(int(hexa, 16))

 binary = binary[:len(binary) - number_of_bits]

 binary = int(binary, 2)

 return hex(binary)

def generate_data(filename):
 '''Given a filename in the current folder get all the page info

 Given a filename find convert the physical page address to virtual page
 address, identify the number of time the pages has been accessed,
seperate
 out the Instruction data accesses from the other accesses.

 Args:
 filename: string which holds the name of the file in the current
 directory which holds all the information that needs to
 be parsed.
 Ex format: hexadeimal,access_type

 Returns: 2 parameters
 data_holder: dictionary which has virtual hexadecimal keys
associated
 with number of page access. Ex: {str: int}
 instructions: set which holds all the virtual hexadecimal key with
 instruction data accesses
 '''
 data_holder = {}
 instructions = set()

 with open(filename) as trace_file:
 for line in trace_file:
 line = line.strip()
 memory, instruction = line.split(",")

 converted_mem = conversion(memory)

 if converted_mem not in data_holder:
 data_holder[converted_mem] = 0

memory_w6.md 03/03/2019

3 / 3

 data_holder[converted_mem] += 1

 if instruction == "I":
 instructions.add(converted_mem)
 return data_holder, instructions

def display_contents(data_holder, instructions):
 '''Displays the number of page accesses and page with instruction
access

 Displays the data in a specified format. Displays instructions type
 accesses with virtual page address followed by number of times called.
Then
 display all the accesses (other than instruction), followed by number
of
 times called

 Args:
 data_holder: dictionary which has virtual hexadecimal keys
associated
 with number of page access. Ex: {str: int}
 instructions: set which holds all the virtual hexadecimal key with
 instruction data accesses

 Returns: str with all the data organized in specified format
 '''
 contents = "Instructions\n"

 for i in instructions:
 contents += i + "," + str(data_holder[i]) + "\n"
 data_holder.pop(i)

 contents += "\nData:\n"
 for key, value in data_holder.items():
 contents += key + "," + str(value) + "\n"

 return contents.strip()

if __name__ == "__main__":
 DATA_HOLDER, INSTRUCTIONS = generate_data(FILENAME)
 CONTENTS = display_contents(DATA_HOLDER, INSTRUCTIONS)

 print(CONTENTS)

