
kernel_programming_w2.md 25/01/2019

1 / 2

Kernel Programming

Kernel: is central part of OS. Computer program that connects software to hardware. Handles:
CPU scheduling
Memory management
Device management

Kernel code lies in main memory. Develop modules seperately and load as needed
Linux kernel modules (.ko files)

insmod: insert module
rmmod: remove module

Basic kernel example. Refer to code 1
import libraries
define which function to

initilize(module_init): function that is used as entry point
exit(module_exit): function that is used to exit

printk is print statement
requires Makefile and Kbuild file

Makefile: organize code compilation
Tutorial Makefile explanation. Refer to code 2

Kernel modules difficult to debug
Use a VM

Kernel API
kalloc: malloc for kernel
kfree: free for kernel

Spinlock: prevents thread from exectuing code in critical section if it is being executed by another
thread. Helps with concurrency

#include <linux/spinlock.h>
spin_lock_init(&myspinlock)
spin_lock/unlock(&myspinlock)

Assignment 1

max group size of 3 people
System Call Table
hijacking a system call: service of kernel, log a message and then continue

MY_CUSTOM_SYSCALL
__NR_exit_group

have to write 5 functions for this assignment
recommendation: start with init_function and exit_function, then move on to the others

we need to keep track of process IDs and the system call table
locks are important and look at all the commands involving locks covered in this tutorial
run tests on VM

// Code 1
#include <linux/kernel.h> // Mark up function eg. __init __exit

http://shell-storm.org/shellcode/files/syscalls.html

kernel_programming_w2.md 25/01/2019

2 / 2

#include <linux/init.h> // loading kernel modules into kernel
#include <linux/module.h> // types, macros, functions for kernels

static int mymodule_init(void) {
 return 0;
}

static void mymodule_exit(void) {
 ;
}

module_init(mymodule_init);
module_exit(mymodule_exit);

Code 2
assign variable KDIR
KDIR=/lib/modules/`uname -r`/build

executed by make kbuild
-C means change directory to KDIR
variable M tells where the actual project files are
kbuild:
 make -C $(KDIR) M=`pwd`

executed by make clean
clean:
 make -C $(KDIR) M=`pwd` clean

